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Optimization Problems in Computer Vision

We are given some image data points y D fyi I i D 1; : : :Ng.

a A deformed circle. b. A deformed circle with clutter

A Bayesian approach is optimal. For example, to describe a circle we use
three parameters .�x ; �y ; r/. S�D.r/.x � µ/ � 1 � .x�µ/2

r2 D 0.

Œ��x ; �
�
y ; r
�� D argmaxP.yj�x ; �y ; r/ D

1
Z

NY
iD1

e�ˇS
2
�D.r/.yi�µ/
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Optimization Problems in Computer Vision
Extract Multiple Instances of a Shape.

a. Two deformed circles. b. Three ellipses with clutter.

Bayesian approach for more objects require more parameters: difficult to
model and to estimate. Alternative: Hough Transform. Votes

V.�x ; �y ; r/ D
NX

iD1

u
�
1
˛
� jS�D.r/.yi � µ/j

�
where u.x/ is the Heaviside step function, u D 1 if jS�.xi � µ/j �

1
˛
and

u D 0 otherwise.
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Optimization Problems in Computer Vision
Extract Multiple Clusters of Points.

We are given some image data points y D fyi I i D 1; : : :Ng.
Classical Gaussian mixture model. In 1D and C clusters

P.yjf�c; �c; ˛cI c D 1; : : : ;Cg/ D
CX

cD1

˛c
1p
2��2

c

e
�
.yi��c/2

2�2
c

where C is the number of classes and normalization 1 D
P

c ˛c. The EM
algorithm, a statistical one, is one of the preferred choices.
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Optimization Problems in Computer Vision
Elastica and In-painting.

Let the 2D curve � be parameterized by x.s/ with unit tangent
dx.s/

ds D e� D .cos �.s/ ; sin �.s//. The Elastica curve minimizes

S.� / D
Z
�

�
1

2 �2 �
2.s/C 


�
ds

Given parameters �; 
 and an initial position and orientation, fX0; �0g. The
formulation was given by James Bernoulli in 1691.
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Optimization Problems in Computer Vision
Elastica and In-painting.

Mumford gave a statistical version

P.� / D
1
Z

e�S.� /
D

1
Z

lim
n!1
n � D L

e
�
Pn

iD0

�
1

2�2
.�i��i�1/2

� C
�

�

and derived the equation

@

@ s
�.x; �; s/ D

�
�2

2
@2

@�2 � e� � r � 

�
�.x; �; s/

to model the density function of the Elastica optimization criteria when view
as a stochastic process.
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Classical Physics and Optimization

F D ma , �
@
@x V.x/ D m d2x.t/

dt2

Lagrangian: L
�

x.t/; dx.t/
dt

�
D

1
2m

�
dx.t/

dt

�2
� V.x/.

Action: S.XT / D
R T
0 L.x.t/; Px.t// dt,

where XT D fx.t/I t 2 Œ0; T �g is a path.

Euler Lagrange Equation to find the local optimal path
X �T D fX �.t/I t 2 Œ0; T �g

d
dt

�
@L.x; Px/
@Px

�
�
@L.x; Px/
@x

D 0 ) F D ma

8



Optics and Optimization

Optics and Fermat Principle: Light travel shortest time path between A and
B.
The trajectory of light X B

A D fx.t/I t 2 ŒtA; tB�g "optimizes" the total amount of
time

X �AB D arg localmin T.XAB/ D

Z tB

tA
dt D

1
c

Z B

A
n.x/dx

where dx
dt D v.x/ D c

n.x/ , with
v.x/- speed of light in a medium with refractive index n.x/,
c- speed of light in vacuum.

Snell’s law, n1 sin �1 D n2 sin �2, follows from it.
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From Classical Optics to Wave Optics

Optics and Fermat Principle: Light travel shortest time path between
A and B.

T.XAB/ D

Z tB

tA
dt D

1
c

Z B

A
n.x/dx

Wave Optics: Optimization criteria becomes a phase. Sum over all
paths.

E.x D B/ D
P

XAB
eiT.XAB/ D

P
XAB

ei 1c
R B
A n.x/dx

special case: constant index n:
E.x D B/ D

P
XAB

ei 1c njXABj D
P

XAB
eik jXABj, where k D n

c .
Another View: Maxwell’s equations

r2E.x; t/ D
� n

c

�2 @2

@t2 E.x; t/ and for E.x; t/ D E.x/e�iwt

r
2E.x/C k2.x/E.x/ D 0
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Quantum Path Integral

Consider states x.t/ that may vary over time. Wave propagation

 T .x.T// D
Z

dX T
0

1
Z

ei 1
„
S.X T

0 /  0.x.0// ;

where X T
0 is a path from initial state x.0/ to final state x.T/ and a

hyper-parameter „ is introduced. The integral is over all possible paths. The
Optimization criteria becomes a phase. Sum over all paths.

Born rule: Probability is derived as P.x; t/ D j t.x.t//j2
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Complex-Valued Hough Transform for Circle
Detection

Hough transform for circles: When tangent information is available, and the
radius is unknown, every point votes for the line perpendicular to the tangent.

Filter Responses: .V.y/; �.y/C �
2 / D .maxj Vj.y/; argmaxjVj.y//

Edges: maximum wavelet response at y over all orientation j (as long as
V.y/ > Th, an empirically defined threshold).
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Experiments setting for Circle Detection
vote type weighted vote

constant real yes �V .x/ D
P

yWx2l.y/ V.y/

constant real no �.x/ D
P

yWx2l.y/ 1

complex yes  V .x/ D
P

yWx2l.y/ V.y/eikjx�yj

complex no  .x/ D
P

yWx2l.y/ eikjx�yj

The shape likelihood, L, is defined as L.x/ D �.x/2 and L.x/ D j .x/j2,
respectively. Detecting shapes consists of finding local maxima in L.
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Experiments for Circle Detection Results are from
normalized maps

Data �2V .x/ �2.x/ | V .x/j2 | .x/j2

14



Experiments for Circle Detection
Outputs of the different methods. (a) Inputs. From top to bottom: synthetic
image with noise 0:1, synthetic image with noise 0:2, 4 cells with small
degree of overlap, 4 cells with large degree of overlap. (b) Voting space of
classic method, weighted by edge strength. (c) Classic, non-weighted. (d)
Complex, weighted by edge strength. (e) Complex, non-weighted.
Magnitude squared of complex number votes provide sharper
accumulator spaces.
From: Complex-Valued Hough Transforms for Circles. M. Cicconet, D.
Geiger and M. Werman. In the IEEE 22nd International Conference in
Image Processing (ICIP), 2015, Quebec City, Canada.
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Quantum Path Integral for Shapes

Consider states .x.t/;�.t// that may vary over time. Wave propagation

 0.µ/ D

Z
dX T

0 K.X T
0 /  Θ.x/ ;

where X T
0 is a path from initial state .x.0/;�.0// D .x; �/ to final state

.x.T/;�.T// D .µ; 0/. The integral is over all possible paths and

K.X§T
0 / D

1
C

ei 1
„
Sx.0/!µ
�!0 .X T

0 / D
1
C

ei T
„
jS�.x.0/�µ/j ;

where a hyper-parameter, „, is introduced.
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Quantum Path Integral for Shapes

Initial wave to be approximated by the data points,
 0.x/ �

1p
N

PN
iD1 ı.x.0/ � yi/. Then,

 �.µ/ �

NX
iD1

Z
dx.0/

ei T
„
jS�.x.0/�µ/j

C
1
p

N
ı.x.0/ � yi/

D
1

C
p

N

NX
iD1

ei T
„
jS�.yi�µ/j

Thus, points of the deformed shape, yi , are interpreted as evidence of
different paths. For an ideal shape there is only optimal classical paths (no
deformation).
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Visualization: Adding/Voting Shape Terms
Note: Occlusion resistance with just 50 votes

P.µ/ �
1

C2N

ˇ̌̌̌
ˇ NX

iD1

ei T
„
jS�.yi�µ/j

ˇ̌̌̌
ˇ
2

; V.�; r/ D
NX

iD1

u
�
1
˛
� jS�D.r/.yi � µ/j

�

From input deformed circle first figure a., the first two data votes: adding
terms u

� 1
˛
� jS�D.r/.yi � µ/j

�
or ei T

„
jS�.yi�µ/j, where „ D 0:03; 1

˛
D 0:02

jS�.y2 � µ/j Hough Vote (y1, y2) Quantum Vote (y1, y2)
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jS�.yi � µ/j

5 votes

10 votes

15 votes

number of data
votes

Hough Vote
(y1: : :y_15/

Quantum Vote
(y1: : :y_15/
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jS�.yi � µ/j

20 votes

50 votes
(occlusion
resistance)

220 votes

number of data
votes

Hough Vote
(y1: : :y_220/

Quantum Vote
(y1: : :y_220/
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Quantum Interference
The quantum probability associated with this probability amplitude (a pure
state) is given by

PΘ.µ/ D j Θ.µ/j2 D
1

C2N

ˇ̌̌̌
ˇ NX

iD1

ei T
„
jS�.yi�µ/j

ˇ̌̌̌
ˇ
2

D
1

C2 N

NX
iD1

241C 2
NX

j>i

cos
�

T
„

�
jS�.yi � µ/j � jS�.yj � µ/j

��35
(2)

where �ij D
T
„

�
jS�.yi � µ/j � jS�.yj � µ/j

�
is the "interference phase".

Pairwise interaction resulting from single data votes, by squaring
 0.µ/.
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Quantum Interference
Analysis cos�ij term, where �ij D

T
„

�
jS�.yi � µ/j � jS�.yj � µ/j

�
.

Two shape points jS�.yi � µ/j � jS�.yj � µ/j and j�ij j � 1, resulting in
cos�ij � 1.

Two clutter points jS�.yi �µ/j and jS�.yj �µ/j are likely to be quite different.
Also, small values of „ result in arbitrary (random) values of mod .j�ij j; 2�/

Shape evaluated at misplaced center location.� D �� C ı�, or other
misplaced set of parameters: even points belonging to the shape will behave
like clutter, canceling each other .
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Experiments

(a) Two Overlapping
Circles (b) Hough Method (c) Quantum Method

Figure: (a) Two overlapping circles deformed with � D 0:5, radius r D 3 and
with 100 points each. The circle centers are at .8; 8/ and .7:2; 7:2/. The
radius is fed to the method. (b) The Hough method with 1

˛
D 0:37. The

method yields a probability that is more diluted and includes the correct
centers, but does not suggest two peaks. (c) The quantum criterion with
„ D 0:12. The intereference of the quantum method leads to two peak
detections at nearby solutions.
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From: Quantum Interference and Shape Detection. D. Geiger and Z.
Kedem. Energy Minimization Methods in Computer Vision and Pattern
Recognition, 2018. Springer International Publishing. pp 18–33.
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Experiments
classical - ellipse center - (7x;7y)
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quantum - ellipse center - (7x;7y)
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Figure: Deformed ellipses, each with large axis a D 3, small axis b D 2,
angle � D 2, and deformation � D 0:05. Centers at
� D .8:0; 8:0/I .8:3; 8:3/I .8:6; 8:6/. We used the classical statistical
method (3) with 1

˛
D 0:04 and the quantum criterion with „ D 0:03. In all of

these experiments, interference of the quantum method leads to greater
contrast between peak solutions and nearby solutions.

From: Quantum Interference and Shape Detection. D. Geiger and Z.
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Kedem. Energy Minimization Methods in Computer Vision and Pattern
Recognition, 2018. Springer International Publishing. pp 18–33.
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Shape Detection Quantum vs Statistics
Classical probability from the quantum probability amplitude via the
Wick rotation

i
T
„
! ˛

From the probability amplitude (2), the Wick rotation yields

PΘ.µ/ D
1
Z

NX
iD1

e�˛ jS�.yi�µ/j : (3)

yi produces a vote v.�;µjyi/ D e�˛ jS�.yi�µ/j, with values between
0 � v.�;µjyi/ � 1.
The hyper-parameter ˛ controls the weight decay of the vote.
Clutter data with larger values for the shape error will cast negligible
votes.
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Shape Detection Quantum vs Statistics
The Hough-like transform with each vote v.�;µjyi/ D e�˛ jS�.yi�µ/j

can be approximated by the binary vote

v.�;µjyi/ D u
�

1
˛
� jS�.yi � µ/j

�
;

The parameter 1
˛
clearly defines the error tolerance for a data point yi

to belong to the shape S�.y � µ/. Resistant to occlusions and clutter.
Still, these statistical models of shape do not exhibit the interference
phenomenon.
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Quantum Path Integral Elastica
A short cut derivation, from Mumford’s equation

@

@ s
�.x; �; s/ D

�
�2

2
@2

@�2
� e� � r � 


�
�.x; �; s/

Wick rotation

i „
@

@ s
 .x; �; s/ D �

�
i „ e� � r C 
 C

�2 „2

2
@2

@�2

�
 .x; �; s/

D H .x; �; s/

i„ ! 1. H is a Hermitian operator. A full path integral slice formulation
with Feynman techniques also yields this equation. This is a quantum
Elastica equation. Experiments need to be carried.
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